(i) Remarks
(i) I, J C q ideals
$$I+J := \begin{cases} x+y \mid x \in I, y \in J \end{cases}$$

 $[x+y, x'+y] = [x, x] + (x, y'] + [y, x'] + [y, y'] = (x)$
Hence it is a Lie sub-algebra. $-adg^{(x)} + adg^{(x)} = [x, y]$
 $I = feet [x+y, y] = [x, y] + (y, y], \in I+J = [x, y]$
 $I+J = [x+y] = [x, y] + (y, y], \in I+J = [x, y]$
 (ii) I an ideal. $e = I+J$
 (ii) I an ideal J as sub-algebra
 $I+J = \{x+y\} = x \in I, y \in J\}$
By (ii) it is an algebra. Not on ideal.
Levi decomposition is $q = R \cdot d(q) + y$ y is a sub-algebra
 $R \cdot d(q) = q = q$.
As a linear space it is a direct sun.
But as Lie-algebras it is So-called Semi-direct product
 $q = q(2) R \cdot d(q)$
Sinte $q/R \cdot d(q) = \eta$ as Lie algebra
 $q = q(2) R \cdot d(q)$
From $v \Rightarrow R \cdot d(y) \to q = q \cdot q \cdot q \cdot q$.

$$B(x, Y) = 2n \operatorname{tr} (x Y) - 2 \operatorname{tr} (x) \operatorname{tr} (Y) \quad on \quad ql(n, \mathbb{C})$$

$$\Rightarrow \quad B_{q} = B_{q} \quad \Rightarrow \quad Fn, \quad A, \overline{A}^{tr} \in q$$

$$B_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} a_{ij} \overline{a}_{ij}, \quad y \in q$$

$$F_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} a_{ij} \overline{a}_{ij}, \quad y \in q$$

$$F_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} a_{ij} \overline{a}_{ij}, \quad y \in q$$

$$F_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} a_{ij} \overline{a}_{ij}, \quad y \in q$$

$$F_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} a_{ij} \overline{a}_{ij}, \quad y \in q$$

$$F_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} a_{ij} \overline{a}_{ij}, \quad y \in q$$

$$F_{q}(A, \overline{A}^{tr}) = 2n \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \neq 0$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \in Sl(n, \mathbb{R})$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \in Sl(n, \mathbb{R})$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \in Sl(n, \mathbb{R})$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \in Sl(n, \mathbb{R})$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A \in Sl(n, \mathbb{R})$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}) = 2n \sum_{i,j} A = 2n \sum_{i,j} A \in Sl(n, \mathbb{R})$$

$$F_{q}(A, \overline{A}^{tr}) = \sqrt{n} \operatorname{tr} (A \overline{A}^{tr}), \quad Y^{tr}) = 2n \sum_{i,j} A = 2n$$

(3) Structure theorem for
$$g - c$$
 semi-simple Lie algebra
(3) $g = 1, 0, 0, 0 \cdots 0.9k$
each g_i is simple
(b) $\forall a$ an ideal $\cdot 5, q$ $a = 5_i, 0 \cdots 0.9i_s$
(c) $g = [9, 9] = 9^{1}$
(d) $Aut(9) / Jut(9)$ is discrete.
(i) a is Not abelian
(ii) a is Not abelian
(iii) a curtains no matrixial
ideal, $(a, e] \neq 0$
(iv) a curtains no matrixial
ideal, $(a, e] \neq 0$
(iv) a curtains no matrixial
ideal, $(a, e] \neq 0$
(iv) a curtains no matrixial
ideal, $(a, e] \neq 0$
(iv) a curtains no matrixial
(ideal, $(a, e] \neq 0$
(iv) a curtains no matrixial
ideal, $(a, e] = a$ if a is simple.
Simple ideal is Semi-simple. Since Rad(c) = $\{0\}$.
(A)
Key leans, $a \in g$ is an ideal β -invariant belian form.
 $\beta|_a$ is non-degenerate. $a^{\pm} = \{x \in g\} [\beta(x, y)=0, \forall y \in e]\}$
Thus a^{\pm} is an ideal, k a an a^{\pm} is Abelian.
 $\frac{\text{Ff}}{a}$ (i) $x \in e^{\pm}$, $y \in g$ $\frac{1}{e^{\pm}}$
 $\beta((x, s], z) = \beta(x, (y, z)) = 0 \implies [x, s] = 0$.
 $\frac{\beta([x, s], z) = \beta(x, (y, z)] = 0 \implies [x, s] = 0$.
 $\frac{\beta([x, s], z) = \beta(x, (y, z)] = 0 \implies [x, s] = 0$.

The same argument shows if
$$\beta$$
 is non-degenerite in a, $[x, s] = 0$
as well.
(B) $dix(a) + dix(a^{1}) = dix(a)$. Let $\{e_i\}_{i=1}^{k}$ basis of a.
 $x = \sum x^{i}e_i$: $x \in a^{\perp}$
 $x^{i} \sum_{i=1}^{n} \beta(e_i; e_i) = 0$ \forall usis k (*)
($\beta_{i}g_{i}$) has rank k
 $(\beta_{i}g_{i})_{i \leq i \leq n}$
 $i \leq j \leq k$ such that $\sum_{j=1}^{k} \beta_{ij} x^{j} = 0$
 $(\lambda' \cdots \lambda^{k}) \neq 0$ $j = 0$ $\forall i$
 $= ?$ $\sum_{j=1}^{k} \lambda^{j}e_{j} = 0$ $\forall i$
 $= ?$ $\sum_{j=1}^{k} \lambda^{j}e_{j} \in Red(\beta)$.
Linear algebra \Rightarrow $dix(a^{\perp}) = \{o\}$, which is the care

if B is non-degenerate (9 is semi-simple, and Abelian)
ideal must be zero
$$\Rightarrow g = a \oplus a^{\perp} (a \times a^{\perp})$$

Applying the pricedure repeatedly
$$\Rightarrow$$

 $Q = G_1 \oplus G_2 \oplus \cdots \oplus G_k$
Note also, when $G = a \oplus c^{\perp}$, $B_3 = B_4 + B_{44}$
 $B_3(x, y) = B(x_1 + x_1, y_1 + y_2) = B(x_1, y_1) + B(z_6, z_1)$
 $\Rightarrow B_4$ is non-degeneric $= B_4(z_6, y_1) + B_4(z_6, z_2)$.
This proves $(\Theta_1, v_3 = a) \Rightarrow B(x, z_1) = a B(x, y_1) = a B(x, y_2) = a B(x, y_1) = B(x, y$

$$= \int If A \in int(g)^{\perp}$$

$$[A, adx] = ad_{Az} = o \qquad \text{Oh int(g) B is}$$

$$[A, adx] = ad_{Az} = o \qquad \text{Oh int(g) B is}$$

$$how degenerate.$$

$$Ax \in \mathcal{F}(S) \qquad by \in int(g) \cap int(g)^{\perp}$$

$$= \int Ax = o \quad \forall x \qquad = \Im \quad A = 0. \qquad \Box.$$

(4) Furthe remarks.
(i)
$$g = g_1 \oplus g_1$$
 we mean it is both as Lie algebre &
 i us vector space
 $[(u, v), (u', v')] = ([u, u'), [v, v])$
In general $[u+v, u'+v] = [u uv] + [v, v'] + [u v'] + [v, u']$
 $\in g_1 n g_2 = fol.$

(ii)
$$g_i$$
 is simple \Rightarrow
 $\varphi(g_i)$ contains no non-trivial ideals.
 $v + k_{i}(d_i) \rightarrow g \xrightarrow{\varphi} \varphi(g) \rightarrow v$ Here if $x \in \varphi(x), y \in g$
 $v \neq \alpha \notin \varphi(g) \quad \varphi^{+}(\alpha) \notin g \quad \varphi^{+}((x, y)) = [\varphi(x), \varphi(y)] \in \alpha$
 $\Rightarrow [x \ y] \in \varphi^{+}(x), \quad \varphi(g)$
Here image of a simple algebra has no neutrivial ideals
 $if \alpha \text{ is an ideal of}$
 $f(g)$
 $if \varphi(g)$ is 1-dimensional, $v = [\varphi(g), \varphi(g)] = o$
 $\Rightarrow \varphi(g) = o, \quad \text{Here } \varphi(g) = \varphi(g) \text{ is simple}, y_g$
Here we have $\varphi(g)$ is simple.

Then if
$$g = g_1 \oplus g_2 \oplus \dots \oplus g_1$$

 $\forall Ig) = \forall (g_1) \oplus \dots \oplus \forall (f_0)$, is semi-simple, by he low. Lie algebra is
 $eight for an eight for a g = g_1 \oplus \dots \oplus g_1$
 $eight for a g = g_1 \oplus \dots \oplus g_1$
 $eight for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g_1 \oplus \dots \oplus g_1$
 $for a g = g$