(1) Remorks
(i) I,J $\subset G$ idecls $I+J:=\{x+y \mid x \in I, y \in J\}$

$$
\begin{equation*}
\left[x+y, x^{\prime}+y^{\prime}\right]=\left[x_{\in I}\right]+\underbrace{\left[x, y^{\prime}\right]}_{\in I n j}+\left[y, x^{\prime}\right]+\underbrace{\{ }_{\in\left[y, y^{\prime}\right]}] \tag{1}
\end{equation*}
$$

Hence it is a Lie sub-alsebra. $-a d_{y}(x)+a d_{y}\left(x^{\prime}\right) \quad[x+y, 3]$

$$
\begin{aligned}
& I+J \text { is still an ided. } \\
& \in I+J
\end{aligned}
$$

(ii) I anided J an sub-elgebra

$$
I+J=\{x+y \mid \quad x \in I, \quad y \in J\}
$$

By (1) it is an alsebra. Not an ideal.
Levi decomposition is $\quad \eta=R a d(y)+\eta \quad \eta$ is a sub-aljebra

$$
\operatorname{Red}(g) n \eta=\{0\} .
$$

As a lineer space it is a direct sum.
But as Lie-algebres, it is so-called ${ }^{〔}$ Semi-direct product

$$
G=\eta\left(\bigoplus \operatorname{Rec}_{\uparrow}(y)\right.
$$

Since $\quad g / \operatorname{Rad}(q) \simeq \eta$ as Lie algebra \uparrow solucble semi-Single $\& \mathrm{~g} / R_{\text {adl }} \mathrm{g}$) is semi-simple. (otherwise From $\rightarrow \operatorname{Rod}(j) \longrightarrow q \xrightarrow{\phi} q / \operatorname{Rad}(g) \longrightarrow 0$

$$
u \rightarrow \operatorname{Rad}(g) \rightarrow \phi^{-1}(c) \xrightarrow{\phi} c \rightarrow 0 \rightarrow \underset{\text { Rad }^{-1}(\mathrm{~s})}{\cup}
$$

Hence η in the Levi-decomposition is always Semi-sinple.
(iii) $\left.|B|_{q^{\prime}} \equiv 0 \quad \Leftrightarrow \quad \begin{array}{cc}\operatorname{tr}\left(\operatorname{ad} d_{x} \cdot \operatorname{ddy}\right)=0 & \forall x \in g^{\prime}=[q g] \\ y \in g\end{array}\right]$

Since

$$
\text { extends into }\left\{e_{i}\right\}_{i=1}^{n}
$$

However if $\left.B\right|_{g 1} \equiv 0 \Rightarrow g^{\prime}$ is solvable by Cartan's criterion [Not ziller version]
$\Rightarrow g$ is solvable since \quad g/ g^{\prime} is Abelian. Hence solvable.
Namely, Ziller's statement of Partan's criterion is ok.
(2) Examples
(i) $g=\operatorname{sl}(n, \mathbb{C})$. A $\operatorname{tr}(A)=0$

Clearly $\quad \overline{A^{t}} \in g$ as well, if $A \in g$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\langle\operatorname{cd} d_{x} \cdot d,\left(e_{i}\right), e_{i}^{*}\right\rangle \\
& =\left(\sum_{i=1}^{k}\left\langle a d_{x} \cdot a d_{j}\left(e_{i}\right), \quad e_{i}^{*}\right\rangle_{\in R H S}\right)\left\{e_{i}\right\}_{i=1}^{k} a \text { basis of } g^{\prime} \\
& \left.\left.B\right|_{g^{\prime}} \equiv 0 \Leftrightarrow \quad \forall x, y \in y^{\prime}\right] \\
& \text { Hence it is a bit weaker, than } \\
& \operatorname{tr}\left(a d_{x} \cdot a d_{y}\right)=0, \quad \forall x \in y^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
B(X, Y)=2 n \operatorname{tr}(X Y)-\underline{2 \operatorname{tr}(X)} \cdot \operatorname{trc(Y)} \text { on } g l(n, \mathbb{C}) \\
\Rightarrow B_{q}=\left.B\right|_{G} \Rightarrow F_{n r}, A, \bar{A}^{\operatorname{tr}} \in g \\
B_{g}\left(A, \bar{A}^{\bar{A}_{r}}\right)=2 n \operatorname{tr}\left(A \bar{A}^{t_{r}}\right)=2 n \sum_{i S_{i}} a_{i j} \overline{a_{i j}}>0 \\
\operatorname{s\ell (n} \mathbb{C})=\{A \mid \operatorname{tr}(A)=0\} \quad \text { if } A \neq 0
\end{gathered}
$$

Hence B is Not degenerate.
ii) (milan $\sim A \in \operatorname{sl}(n, \mathbb{R})$
(ii) Similarly $s l(n, \mathbb{R})$ is semi-simple. $\quad A^{t r} \in \operatorname{sl}(a, \mathbb{R})$
 heeds its own Calculation

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{Rad}(g)=q \text {. } \\
& n \geqslant 2 \text { it is } \\
& B(X, X)=\left\langle\operatorname{ad} d_{x} d_{x}(r), Y^{*}\right\rangle=1 \\
& B(X, Y)=\left\langle\operatorname{ad}_{X} \operatorname{corl}_{Y}(x), X^{*}\right\rangle+\left\langle\left\langle d_{x}\left\langle d_{y}(y), Y_{1} Y^{*}\right\rangle=0\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Rad}(B)=\operatorname{spa}\{t\} . \quad \operatorname{Rad}(B) \neq \operatorname{Rcd}(g) \text {. }
\end{aligned}
$$

Is $\operatorname{Rad}(B) \subset \operatorname{Red}(y)$?
Yes. Kevin Daw will show us. Homework
(3) Structure theorem for g - a Semi- simple Lie algebin
(a) $g=g_{1}()^{2} g_{2} \oplus \cdots \Leftrightarrow g_{k}$
each y_{i} is simple
(b) $\forall a$ an ideal if $q \quad a=g_{i} \oplus \ldots \oplus g_{i \text { s }}$
(c) $y=[y, y]=y^{\prime}$
(d) $\operatorname{Aut}(y) / I_{n t}(g)$ is discrete.

Def acg anided in colled simple, if (i) a is Not abelian $[a, a] \neq 0$
(ii) a conteins no nontritial idecl, (except 0,\& a).
$\Rightarrow[a, a]=a$ if a is simple.
Simple ideal is semi-simple. Since Rad(a) $=\{0\}$.
(A) is an ideal.

Keylenn:, $a<g$ is an ided β-inverient bilinear form. $\left.\beta\right|_{a}$ is non-degenerete. $a^{\perp}:=\{x \in g \mid \beta(x, y)=0, \forall y \in a\}$
Then a^{+}is an ided, \& $a n a^{+}$is Abelien.
Pf (i) $x \in a^{\perp}, \quad y \in g \quad z \in a$

$$
\beta([x, y], z)=\beta(x, \underbrace{[y, z]}_{\epsilon a})=0 \quad \Rightarrow[x, y] \in a^{\perp}
$$

(ii) $\forall x, y \in a \cap a^{\perp}$ ($c a$)

$$
\beta([x, y], z)=\beta\left(x, \underset{\in_{a}}{[y, z])}=0 \quad \Rightarrow \quad[x, y]=0 .\right.
$$

The same argument shows if β is nun-degenarcte on $a,[x, y]=0$ as well.
(B)

$$
\begin{align*}
& \operatorname{din}(a)+\operatorname{din}\left(a^{\perp}\right)=\operatorname{dim}(g) \quad \text { Let }\left\{e_{i}\right\}_{i=1}^{k} \text { basis of } a . \\
& x=\sum^{i} x^{i} e_{i} \quad x \in a^{\perp} \\
& x^{i} \sum_{i=1}^{n} \underbrace{\beta\left(e_{i}, e_{j}\right)}_{\beta_{i j}}=0 \quad \forall \quad \text { wi sk } \quad \text { (*) } \tag{*}
\end{align*}
$$

$\left(\beta_{i j}\right)_{k i \leqslant n}$ has rank k
Other wise $\begin{aligned} & 1 \leq j \leq k \\ & \exists \lambda^{j} \\ & \left(\lambda^{\prime} \ldots \lambda^{k}\right) \neq 0\end{aligned}$ such that $\quad \sum_{j=1}^{k} \beta_{i j} \lambda^{j}=0$

$$
\begin{gathered}
\Rightarrow \quad \beta\left(e_{i} \sum_{j=1}^{k} \lambda^{j} e_{j}\right)=0 \quad \forall i \\
\Rightarrow \quad \sum_{j=1}^{n} \lambda^{j} e_{j} \in \operatorname{Rad}(\beta) .
\end{gathered}
$$

$$
\text { Linear algehro } \Rightarrow \quad \operatorname{din}\left(a^{\perp}\right)=(\text { Solutions pace of }(*))
$$

$$
=n-k .
$$

a
Then (A) $t(B)$, if $a \cap a^{\perp}=\{0\}$, which is the care if $\underline{B \text { is non-degenerate. (} q \text { is semi-simple, and Abelian) }} \begin{gathered}\text { ideal inst be zero }\end{gathered}$

$$
\Rightarrow q=a \oplus a^{\perp} \quad\left(a \times a^{\perp}\right)
$$

Applying the procedure repeatedly \Rightarrow

$$
q=g_{1} \oplus g_{2} \oplus \cdots \Theta g_{k}
$$

Note also, when $g=a \oplus a^{\perp}, \quad B_{g}=B_{a}+B_{a^{\perp}}$

$$
\begin{aligned}
B_{g}(x, y)=B\left(x_{1}+x_{2}, y_{1}+y_{2}\right) & =B\left(x_{1}, y_{1}\right)+B\left(x_{2}, y_{1}\right] \\
\Rightarrow \quad B_{a} \text { is non-degenerite } & =B_{a}\left(x, y_{1}\right)+B_{a^{4}}\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

This proves (a). $\forall y \in a \Rightarrow \begin{gathered}\text { since if } \\ B_{a}(x, y)=0 \\ \forall 子\end{gathered}$
For (b), it is clearly a $\cap g_{i}$ is either $=g_{i}$ or 0 . (g_{i} is simple).
Hence $\quad a=g_{r_{i}} \oplus \cdots \oplus g_{i s}$
For (c). Simply note for $g_{i} \quad\left[g_{i}, g_{i}\right]=g_{i}$ due to g_{i} is simple.
For (d): $\quad A \in \operatorname{Der}(\eta) \Rightarrow A([X Y])=[A X, Y]+[X, A Y]$

$$
\Rightarrow \quad A \cdot a d_{x}=a d_{A x}+a d_{x} A
$$

Namely $\quad A \cdot a d_{x}-a d_{x} A=a d_{A x} \quad\left\{\begin{array}{l}\operatorname{int}(g) \\ :=a d g\end{array}\right.$

ad: $g \longrightarrow \operatorname{int}(g) \subset g l(g)$ is an isomorphism with lie algebra
since $J(g)=\{0\}$.
$\Rightarrow \quad$ int $|g|$ is semi-sinple
$\Rightarrow \quad \operatorname{int}(g) \cap \operatorname{int}(g)^{\perp}=\{0\}$ by the Key Lemme ns it Abelian in $D \operatorname{Der}(g)$ by the key Lemme $=0$ due to $\operatorname{int}(q)$ is semi-simple.

$$
\begin{aligned}
& \Rightarrow \text { If } A \in \operatorname{int}(g)^{\perp} \\
& \quad\left[A, a a_{x}\right]=\quad \operatorname{ad} d_{x x}=0
\end{aligned}
$$

On intig) B is nondegenerecte.
11
$A x \in f(g) \quad 0$ by $E \operatorname{int}(g) n \operatorname{int}(g)^{\perp}$

$$
\Rightarrow \quad A x=0 \quad \forall x \Rightarrow A=0 \text {. }
$$

(4) Furthe remarks.
(i) $g=y_{1} \oplus g_{2}$ we mean it is both as lie algebra. \&

$$
\begin{aligned}
& y=d_{1} \oplus d_{2} \text { as vector space } \\
& {\left[(u, v),\left(u^{\prime}, u^{\prime}\right)\right]=\left(\left[u, u^{\prime}\right],[r, u 1]\right)}
\end{aligned}
$$

In general $\left[\begin{array}{ll}u+n, & \left.u^{\prime}+w^{\prime}\right]\end{array}\right]=\left[\begin{array}{ll}n & u\end{array}\right]+\left[\begin{array}{ll}v & u\end{array}\right]+\left[\begin{array}{ll}n & v^{\prime}\end{array}\right]+\left[\begin{array}{ll}v, & u^{\prime}\end{array}\right]$

$$
\in \underbrace{}_{g_{1} \cap g_{2}}=\{0\} .
$$

(ii) Gin simple \Rightarrow
$\phi\left(g_{i}\right)$ contains no nontrivial ideals.

$$
\begin{align*}
& 0 \rightarrow k_{e}(x) \rightarrow g \xrightarrow{\phi} \phi(g) \rightarrow 0 \text { Hent if } x \in \phi^{-1}(a), y \in g \\
& 0 \neq a \not \& \phi(g) \quad \phi^{-1}(a) \subset g . \quad \phi([x, y])=[\phi(x), \phi(y)] \in a \\
& \Rightarrow \quad\left[\begin{array}{ll}
x & y
\end{array}\right] \in \phi^{-1}(c) . \tag{g}\\
& \text { if } a \text { is an ideal of }
\end{align*}
$$

Hence image of a simplealgetre has no nontrivial ideals
If $\phi(s)$ is 1 -dimensional, or $[\phi(g), \phi(\xi)]=0$

$$
\Rightarrow \phi(g)=0 . \quad \text { Hence } \phi(g) \neq 0 \Rightarrow \phi(g \mid \text { if simple. "is }
$$

Hence we have $\phi(\xi)$ is simple.

Then if $g=g_{1} \oplus g_{2} \oplus \ldots \oplus y_{k}$
Namely the image of semi-simple
$\phi(g)=\phi\left(g_{1}\right) \oplus \cdots \leftrightarrow \phi([l)$. is semi-simply by below. Lie algebra is Semi-simple.
Claim if $g=g_{1} \oplus \ldots \uplus \delta h \quad$ Si simple
$\Rightarrow g$ is semi-simple.
W. L.G we considerit
over \mathbb{C}.

$$
\begin{array}{ll}
B=B_{1} \oplus \cdots & \oplus B_{h} \\
B(x, y)=0 \quad & B_{1}\left(x_{i}, y_{i}\right)=0 \quad \forall \cdot y_{i} \in y_{i} \quad \\
\forall y \Rightarrow & x_{i}=0 \\
x=\left\{x_{i} .\right. & \\
y=\sum y_{i} &
\end{array}
$$

